4.7 Article

CsA attenuates compression-induced nucleus pulposus mesenchymal stem cells apoptosis via alleviating mitochondrial dysfunction and oxidative stress

期刊

LIFE SCIENCES
卷 205, 期 -, 页码 26-37

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2018.05.014

关键词

Intervertebral disc degeneration (IVDD); Cyclosporine A; Nucleus pulposus mesenchymal stem cells; Mitochondrial dysfunction; Oxidative stress; Apoptosis

资金

  1. National Natural Science Foundation of China [81572203]
  2. National Key Research and Development Program of China [2016YFC1100100]
  3. Major Research Plan of National Natural Science Foundation of China [91649204]

向作者/读者索取更多资源

Aims: This study aims to investigate the protective effects and potential mechanisms of cyclosporine A (CsA), which efficiently inhibits mitochondrial permeability transition pore (MPTP) opening, on compression-induced apoptosis of human nucleus pulposus mesenchymal stem cells (NP-MSCs). Materials and methods: Human NP-MSCs were subjected to various periods of 1.0 MPa compression. Cell viability was evaluated using cell counting kit-8 (CCK-8) assay. The cellular ultrastructure and ATP level were analyzed via transmission electron microscopy (TEM) and ATP detection kit respectively. The apoptosis ratio was determined using Annexin V/PI dual staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. The levels of apoptosis-associated molecules (cleaved caspase-3, Bax and Bcl-2) were analyzed by western blot and qRT-PCR. Additionally, MPTP opening, mitochondrial membrane potential (MMP) and the levels of oxidative stress-related indicators (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) were monitored. Key findings: Annexin V/PI dual staining and detection of apoptosis-associated molecules demonstrated that compression significantly up-regulated apoptosis level of NP-MSCs in a time-dependent manner. CsA greatly down-regulated compression-mediated NP-MSC apoptosis and the cell death ratio. Compression also notably exacerbated mitochondrial dysfunction, ATP depletion and oxidative stress in NP-MSCs, all of which were rescued by CsA. Significance: Our results demonstrated that CsA efficiently inhibited compression-induced NP-MSCs apoptosis by alleviating mitochondrial dysfunction and oxidative stress. These findings provide new insights into intervertebral disc (IVD) degeneration (IVDD), and suggest CsA treatment as a potential strategy for delaying or even preventing IVDD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据