3.8 Proceedings Paper

DETECTION OF RETINAL VESSELS IN FUNDUS IMAGES THROUGH TRANSFER LEARNING OF TISSUE SPECIFIC PHOTON INTERACTION STATISTICAL PHYSICS

出版社

IEEE

关键词

Vessel detection; retinal imaging; machine learning; inductive transfer; statistical physics; random forests

向作者/读者索取更多资源

Loss of visual acuity on account of retina-related vision impairment can be partly prevented through periodic screening with fundus color imaging. Largescale screening is currently challenged by inability to exhaustively detect fine blood vessels crucial to disease diagnosis. In this work we present a framework for reliable blood vessel detection in fundus color imaging through inductive transfer learning of photon-tissue interaction statistical physics. The source task estimates photon-tissue interaction as a spatially localized Poisson process of photons sensed by the RGB sensor. The target task identifies vascular and non-vascular tissues using knowledge transferred from source task. The source and target domains are retinal images obtained using a color fundus camera with white-light illumination. In experimental evaluation with the DRIVE database, we achieve the objective of vessel detection with max. avg. accuracy of 0.9766 and kappa of 0.8213.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据