4.6 Article

Fabrication of Hexagonal-Prismatic Granular Hydrogel Sheets

期刊

LANGMUIR
卷 34, 期 11, 页码 3459-3466

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.7b04163

关键词

-

资金

  1. Swiss National Science Foundation (SNSF) [200021_155997]
  2. Swiss National Science Foundation (SNF) [200021_155997] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Natural soft materials are often composed of proteins that self-assemble into well-defined structures and display mechanical properties that cannot be matched by manmade materials. These materials are frequently mimicked with hydrogels whose mechanical properties depend on their composition and the type and density of cross-links. Protocols to tune these parameters are well established and routinely used. The mechanical properties of hydrogels also depend on their structure; this parameter is more difficult to control. In this paper, we present a method to produce hexagonal-prismatic granular hydrogel sheets with well-defined structures and heterogeneous cross-link densities. The hydrogel sheets are made of self-assembled covalently cross-linked 40-120 mu m diameter hexagonal-prismatic hydrogel particles that display a narrow size distribution. The structure and microscale surface roughness of the hydrogels sheets can be tuned with the polymerization conditions, their chemical composition with that of the individual hydrogel particles, and their mechanical properties with the cross-link density. Remarkably, the hydrogels composed of hexagonal-prismatic microparticles are significantly stiffer than unstructured counterparts. These results demonstrate that the stiffness of hydrogels can be tuned by controlling their micrometer-scale structure without altering their composition. Thereby, they open up new possibilities to design soft materials whose performance more closely resembles that of natural ones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据