4.6 Article

DNA-Responsive SiO2 Nanoparticles, Metal-Organic Frameworks, and Microcapsules for Controlled Drug Release

期刊

LANGMUIR
卷 34, 期 49, 页码 14692-14710

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.8b00478

关键词

-

资金

  1. Israel Science Foundation

向作者/读者索取更多资源

Recent advances addressing the development of stimuli-responsive nucleic acid (DNA)-functionalized micro/nanocarriers for the controlled release of drugs are presented. The DNA associated with the drug-loaded carriers acts as capping units that lock the drugs in the carriers. In the presence of appropriate triggers, the capping units are unlocked, resulting in the release of the drugs. Three types of DNA-modified carriers are discussed, including mesoporous SiO2 nanoparticles (MP SiO2 NPs), metal- organic framework nanoparticles (NMOFs) and micro/nanocapsules. The triggers to unlock the DNA gating units include pH, the dissociation of K+-stabilized G-quadruplexes in the presence of crown ethers, the catalytic dissociation of the capping units by enzymes or DNAzymes, the dissociation of capping units by the formation of aptamer-ligand complexes (particularly ligands acting as biomarkers for different diseases), and the use of light for the photochemical unlocking of the DNA gates. Different issues related to the targeting of the different drug-loaded carriers to cancer cells, the switchable ON/OFF release of the drug loads, and the selective cytotoxicity of the drug-loaded carriers toward cancer cells are discussed. Finally, the future perspectives of the stimuli-responsive DNA-based, drug-loaded micro/nanocarriers for future nanomedicine and, in particular, the development of autonomous sense-and-treat systems are addressed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据