4.6 Article

Hydrogelation Kinetics Measured in a Microfluidic Device with in Situ X-ray and Fluorescence Detection

期刊

LANGMUIR
卷 34, 期 19, 页码 5535-5544

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.8b00384

关键词

-

资金

  1. ERC Advanced Grant (STREAM) [291211]
  2. DFG Graduate School [GRK 1640]
  3. DAAD Bayreuth-Melbourne thematic network

向作者/读者索取更多资源

Efficient hydrogelators will gel water fast and at low concentrations. Small molecule gelling agents that assemble into fibers and fiber networks are particularly effective hydrogelators. Whereas it is straightforward to determine their critical concentration for hydrogelation, the kinetics of hydrogelation is more difficult to study because it is often very fast, occurring on the subsecond time scale. We used a 3D focusing microfluidic device combined with fluorescence microscopy and in situ small-angle X-ray scattering (SAXS) to study the fast pH-induced gelation of a model small molecule gelling agent at the millisecond time scale. The gelator is a 1,3,S-benzene tricarboxamide which upon acidification assembles into nanofibrils and fibril networks that show a characteristic photoluminescence. By adjusting the flow rates, the regime of early nanofibril formation and gelation could be followed along the microfluidic reaction channel. The measured fluorescence intensity profiles were analyzed in terms of a diffusion-advection-reaction model to determine the association rate constant, which is in a typical range for the small molecule self-assembly. Using in situ SAXS, we could determine the dimensions of the fibers that were formed during the early self assembly process. The detailed structure of the fibers was subsequently determined by cryotransmission electron microscopy. The study demonstrates that 3D focusing microfluidic devices are a powerful means to study the self-assembly on the millisecond time scale, which is applied to reveal early state of hydrogelation kinetics. In combination with in situ fluorescence and X-ray scattering, these experiments provide detailed insights into the first self-assembly steps and their reaction rates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据