4.6 Article

Perfect blackbody radiation from a graphene nanostructure with application to high-temperature spectral emissivity measurements

期刊

OPTICS EXPRESS
卷 21, 期 25, 页码 30964-30974

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.21.030964

关键词

-

类别

资金

  1. New Energy and Industrial Technology Development Organization (NEDO)

向作者/读者索取更多资源

We report the successful fabrication of a novel type of blackbody material based on a graphene nanostructure. We demonstrate that the graphene nanostructure not only shows a low reflectance comparable to that of a carbon nanotube array but also shows an extremely high heat resistance at temperatures greater than 2500 K. The graphene nanostructure, which has an emissivity higher than 0.99 over a wide range of wavelengths, behaves as a standard blackbody material; therefore, the radiation spectrum and the temperature can be precisely measured in a simple manner. Here, the spectral emissivities of tungsten and tantalum are experimentally obtained using this ideal blackbody material and are compared to previously reported spectra. We clearly demonstrate the existence of a temperature-independent fixed point of emissivity at a certain wavelength. Both the spectral emissivity as a function of temperature and the cross-over point in the emissivity spectrum are well described by the complex dielectric function based on the Lorentz-Drude model with the phonon-scattering effect. (C) 2013 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据