4.7 Article

A new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problems

期刊

KNOWLEDGE-BASED SYSTEMS
卷 144, 期 -, 页码 153-173

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.knosys.2017.12.031

关键词

Fruit fly optimization algorithm; Optimal search direction; Iteration step value; Crossover and mutation operations; Multi-sub-swarm; Engineering optimization problem

资金

  1. project foundation of china Ministry of industry and information technology Research of gordian technique of deep-water semi-submersible platforms
  2. Project of scientific and technological achievements of Jiangsu province Research and industrialization of the key techniques of drilling string used in marine deep water

向作者/读者索取更多资源

Nature-inspired algorithms are widely used in mathematical and engineering optimization. As one of the latest swarm intelligence-based methods, fruit fly optimization algorithm (FOA) was proposed inspired by the foraging behavior of fruit fly. In order to overcome the shortcomings of original FOA, a new improved fruit fly optimization algorithm called IAFOA is presented in this paper. Compared with original FOA, IAFOA includes four extra mechanisms: 1) adaptive selection mechanism for the search direction, 2) adaptive adjustment mechanism for the iteration step value, 3) adaptive crossover and mutation mechanism, and 4) multi-sub-swarm mechanism. The adaptive selection mechanism for the search direction allows the individuals to search for global optimum based on the experience of the previous iteration generations. According to the adaptive adjustment mechanism, the iteration step value can change automatically based on the iteration number and the best smell concentrations of different generations. Besides, the adaptive crossover and mutation mechanism introduces crossover and mutation operations into IAFOA, and advises that the individuals with different fitness values should be operated with different crossover and mutation probabilities. The multi-sub-swarm mechanism can spread optimization information among the individuals of the two sub-swarms, and quicken the convergence speed. In order to take an insight into the proposed IAFOA, computational complexity analysis and convergence analysis are given. Experiment results based on a group of 29 benchmark functions show that IAFOA has the best performance among several intelligent algorithms, which include five variants of FOA and five advanced intelligent optimization algorithms. Then, IAFOA is used to solve three engineering optimization problems for the purpose of verifying its practicability, and experiment results show that IAFOA can generate the best solutions compared with other ten algorithms. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据