4.7 Article

Gene expression profiles of glomerular endothelial cells support their role in the glomerulopathy of diabetic mice

期刊

KIDNEY INTERNATIONAL
卷 94, 期 2, 页码 326-345

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.kint.2018.02.028

关键词

diabetic nephropathy; endothelial nitric oxide synthase; glomerular endothelial cells; transcriptional profiling

资金

  1. Major International (Regional) Joint Research Project [81320108007]
  2. Major Research Plan of the National Natural Science Foundation [91442104]
  3. National Institutes of Health (NIH) [NIH 1R01DK078897, NIH 1R01DK088541, NIH P01-DK-56492]
  4. VA Merit Award
  5. NIH [1R01DK098126]
  6. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL062248] Funding Source: NIH RePORTER
  7. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R01DK078897, R01DK088541, P01DK056492, R01DK098126] Funding Source: NIH RePORTER
  8. Veterans Affairs [I01BX000345] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Endothelial dysfunction promotes the pathogenesis of diabetic nephropathy (DN), which is considered to be an early event in disease progression. However, the molecular changes associated with glomerular endothelial cell (GEC) injury in early DN are not well defined. Most gene expression studies have relied on the indirect assessment of GEC injury from isolated glomeruli or renal cortices. Here, we present transcriptomic analysis of isolated GECs, using streptozotocin-induced diabetic wildtype (STZ-WT) and diabetic eNOS-null (STZ-eNOS(-/-)) mice as models of mild and advanced DN, respectively. GECs of both models in comparison to their respective nondiabetic controls showed significant alterations in the regulation of apoptosis, oxidative stress, and proliferation. The extent of these changes was greater in STZ-eNOSL/L than in STZ-WT GECs. Additionally, genes in STZ-eNOS(-/-) GECs indicated further dysregulation in angiogenesis and epigenetic regulation. Moreover, a biphasic change in the number of GECs, characterized by an initial increase and subsequent decrease over time, was observed only in STZ-eNOS(-/-) mice. This is consistent with an early compensatory angiogenic process followed by increased apoptosis, leading to an overall decrease in GEC survival in DN progression. From the genes altered in angiogenesis in STZ-eNOS(-/-) GECs, we identified potential candidate genes, Lrg1 and Gpr56, whose function may augment diabetes-induced angiogenesis. Thus, our results support a role for GEC in DN by providing direct evidence for alterations of GEC gene expression and molecular pathways. Candidate genes of specific pathways, such as Lrg1 and Gpr56, can be further explored for potential therapeutic targeting to mitigate the initiation and progression of DN.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据