4.5 Article

Tailoring nanopore formation in atomic layer deposited ultrathin films

期刊

出版社

A V S AMER INST PHYSICS
DOI: 10.1116/1.5003360

关键词

-

资金

  1. Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center - U.S. Department of Energy, Office of Basic Energy Sciences
  2. U.S. DOE [DE-AC02-06CH11357]

向作者/读者索取更多资源

Selectivity is a critical attribute of catalysts used in manufacturing of essential and fine chemicals. An excellent way to induce selectivity in catalysts is by using ultrathin films with tailored nanoporosity. For instance, nanopores can be created in atomic layer deposition (ALD) ultrathin over-coatings on supported metal nanoparticles by subjecting the coatings to high temperature annealing. These nanopores expose the active surface of the underlying metal nanoparticles. The dimensions of these nanopores can be tuned to impart shape selectivity: only reactants or products with a specific size or shape can fit inside the pore. In this work, the authors explore the underlying mechanism driving nanopore formation in ALD films. Ultrathin films of ALD TiO2 (similar to 2.5 nm thick) and ALD Al2O3 (similar to 4.9 nm thick) were deposited on nonporous gamma-Al2O3 nanoparticles. The pore formation and evolution were monitored in situ during thermal annealing using small-angle x-ray scattering (SAXS), and the crystallinity was monitored by in situ x-ray diffraction. A correlation between the nanopore formation and amorphous to crystalline phase transitions in the ALD layers was observed. The authors hypothesize that the pores form through the relaxation of stress induced by densification of the ALD films during the phase transitions. The authors developed a mathematical model to evaluate this hypothesis and found remarkable agreement between the model and the SAXS measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据