3.8 Proceedings Paper

Spins, Stripes, and Superconductivity in Hole-Doped Cuprates

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4818402

关键词

superconductivity; antiferromagnetism; charge order; stripes; cuprates; nickelates; neutron scattering

向作者/读者索取更多资源

One of the major themes in correlated electron physics over the last quarter century has been the problem of high-temperature superconductivity in hole-doped copper-oxide compounds. Fundamental to this problem is the competition between antiferromagnetic spin correlations, a symptom of strong Coulomb interactions, and the kinetic energy of the doped carriers, which favors delocalization. After discussing some of the early challenges in the field, I describe the experimental picture provided by a variety of spectroscopic and transport techniques. Then I turn to the technique of neutron scattering, and discuss how it is used to determine spin correlations, especially in model systems of quantum magnetism. Neutron scattering and complementary techniques have determined the extent to which antiferromagnetic spin correlations survive in the cuprate superconductors. One experimental case involves the ordering of spin and charge stripes. I first consider related measurements on model compounds, such as La2-xSrxNiO4+delta, and then discuss the case of La2-xBaxCuO4. In the latter system, recent transport studies have demonstrated that quasi-two-dimensional superconductivity coexists with the stripe order, but with frustrated phase order between the layers. This has led to new concepts for the coexistence of spin order and superconductivity. While the relevance of stripe correlations to high-temperature superconductivity remains a subject of controversy, there is no question that stripes are an intriguing example of electron matter that results from strong correlations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据