4.7 Article

Laser ignition and combustion characteristics of Al/JP-10 nanofluid droplet

期刊

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
卷 135, 期 2, 页码 925-934

出版社

SPRINGER
DOI: 10.1007/s10973-018-7393-6

关键词

Nanofluid fuel; Ignition and combustion; Nanoparticles; JP-10

向作者/读者索取更多资源

A CO2 laser ignition system was used to ignite the pure JP-10 (endo-Tetrahydrodicyclopentadiene, C10H16) and aluminum (Al)/JP-10 nanofluid droplet. Online combustion diagnosis and combustion residue analysis were combined to study the effect of solid content and atmosphere on the ignition and combustion characteristics of the Al/JP-10 nanofluid droplet. The combustion process of JP-10 can be divided into three stages, namely, ignition, steady burning, and extinguishment, while the combustion process of Al/JP-10 nanofluid can be divided into four stages, namely, ignition, mixed burning, mass burning, and extinguishment. Aluminum nanoparticles can effectively improve the volume calorific value of fuel. With the increase in solid content, the ignition time of the droplet is significantly shortened and the combustion intensity is increased. However, the increase of solid content introduces particle agglomeration problems, which decreases the oxidation degree of Al nanoparticles. Compared with air, the intensity of droplet combustion increases significantly in oxygen atmosphere. The highest combustion temperature of the fuel droplet with a solid content of 10% reached 1843 degrees C, the oxidation efficiency of the residues increased significantly, and the combustion efficiency of aluminum particles reached 99.26%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据