4.7 Article

Enhancement mechanism of hydroxyapatite for photocatalytic degradation of gaseous formaldehyde over TiO2/hydroxyapatite

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jtice.2017.12.021

关键词

Tio(2)/hydroxyapatite; VOCs degradation; Photocatalysis; Langmuir-Hinshelwood model; Kinetic modeling

向作者/读者索取更多资源

Hydroxyapatite (HAP) was reported to promote photocatalytic degradation as a support for photocatalysts, but the enhancement mechanism is still unclear. In this study, the promotion role of HAP to TiO2 in photocatalytic degradation is unraveled using experimental observations and kinetic modeling. TiO2/HAP is successfully synthesized by a facile hydrothermal method, which is confirmed by SEM-EDS, TEM, ICP, XRD, and Raman. HAP exhibits a negative effect on the photo absorption ability of TiO2/HAP, which is characterized by UV-vis reflectance spectra (Tauc plot). The formaldehyde-temperature programmed desorption results reveal an affinity between HAP and formaldehyde via a weak chemisorption, which is validated by the estimated adsorption enthalpy/entropy from Van't Hoff plot based on Langmuir-Hinshelwood model. The derived kinetic parameters, including reaction rate constant, Langmuir adsorption constant, apparent activation energy, and adsorption enthalpy and entropy, confirm the experimental results that TiO2/HAP is more active than TiO2. This work verifies the existence of superior chemisorption between HAP and VOCs leading to a better performance of TiO2/HAP for photocatalytic degradation. It helps to understand the role of HAP as an effective support in designing novel HAP -based catalysts. (C) 2017 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据