4.7 Article

Motion of grain boundaries incorporating dislocation structure

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2018.05.001

关键词

Grain boundary dynamics; Dislocation dynamics; Long-range elastic interaction; Grain rotation; Coupling and sliding

资金

  1. Hong Kong Research Grants Council General Research Fund [606313]

向作者/读者索取更多资源

In this paper, we present a continuum model for the dynamics of low angle grain boundaries in two dimensions based on the motion of constituent dislocations of the grain boundaries. The continuum model consists of an equation for the motion of grain boundaries (i.e., motion of the constituent dislocations in the grain boundary normal direction) and equations for the dislocation structure evolution on the grain boundaries. This model is derived from the discrete dislocation dynamics model. The long-range elastic interaction between dislocations is included in the continuum model, which ensures that the dislocation structure on a grain boundary is consistent with the Frank's formula. These evolutions of the grain boundary and its dislocation structure are able to describe both normal motion and tangential translation of the grain boundary and grain rotation due to both coupling and sliding. Since the continuum model is based upon dislocation structure, it naturally accounts for the grain boundary shape change during the motion and rotation of the grain boundary by motion and reaction of the constituent dislocations. Using the derived continuum grain boundary dynamics model, simulations are performed for the dynamics of circular and non-circular two dimensional grain boundaries, and the results are validated by discrete dislocation dynamics simulations. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据