4.6 Article

Estimation of the Young's moduli of fresh human oropharyngeal soft tissues using indentation testing

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmbbm.2018.07.004

关键词

Obstructive sleep apnea (OSA); Oropharyngeal soft tissues; Biomechanical modeling; Indentation; Soft tissue biomechanics; Finite element method

资金

  1. Lawson Health Research Institute Internal Grant [IRF-58-11]

向作者/读者索取更多资源

Finite element (FE)-based biomechanical simulations of the upper airway are promising computational tools to study abnormal upper airway deformations under obstructive sleep apnea (OSA) conditions and to help guide minimally invasive surgical interventions in case of upper airway collapse. To this end, passive biomechanical properties of the upper airway tissues, especially oropharyngeal soft tissues, are indispensable. This research aimed at characterizing the linear elastic mechanical properties of the oropharyngeal soft tissues including palatine tonsil, soft palate, uvula, and tongue base. For this purpose, precise indentation experiments were conducted on freshly harvested human tissue samples accompanied by FE-based inversion schemes. To minimize the impact of the probable nonlinearities of the tested tissue samples, only the first quarter of the measured force-displacement data corresponding to the linear elastic regime was utilized in the FE-based inversion scheme to improve the accuracy of the tissue samples Young's modulus calculations. Measured Young's moduli of the oropharyngeal soft tissues obtained in this study are presented. They include first estimates for palatine tonsil tissue samples while measured Young's moduli of other upper airway tissues were obtained for the first time using fresh human tissue samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据