4.6 Article

Surface integrity and corrosion performance of biomedical magnesium-calcium alloy processed by hybrid dry cutting-finish burnishing

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmbbm.2017.11.026

关键词

Surface integrity; Biomedical; Corrosion; Biodegradable implant; Hybrid manufacturing

资金

  1. NSF [CMMI-1000706]

向作者/读者索取更多资源

Biodegradable magnesium-calcium (MgCa) alloy is a very attractive orthopedic biomaterial compared to permanent metallic alloys. However, the critical issue is that MgCa alloy corrodes too fast in the human organism. Compared to dry cutting, the synergistic dry cutting-finish burnishing can significantly improve corrosion performance of MgCa0.8 (wt%) alloy by producing a superior surface integrity including good surface finish, high compressive hook-shaped residual stress profile, extended strain hardening in subsurface, and little change of grain size. A FEA model was developed to understand the plastic deformation of MgCa materials during burnishing process. The measured polarization curves, surface micrographs, and element distributions of the corroded surfaces by burnishing show an increasing and uniform corrosion resistance to simulated body fluid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据