4.6 Article

Bladder wall biomechanics: A comprehensive study on fresh porcine urinary bladder

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmbbm.2017.11.034

关键词

Biomechanics; Urinary bladder wall; Uniaxial tensile; Ball-burst; DMA; Viscoelastic

资金

  1. Danish Council for Independent Research, Denmark [4093-00282A, 4217-00048A, 12-126515/0602-02670B]

向作者/读者索取更多资源

Regenerative medicine for reconstructive urogenital surgery has been widely studied during the last two decades. One of the key factors affecting the quality of bladder regeneration is the mechanical properties of the bladder scaffold. Insight into the biomechanics of this organ is expected to assist researchers with functional regeneration of the bladder wall. Due to extensive similarities between human bladder and porcine bladder, and with regard to lack of comprehensive biomechanical data from the porcine bladder wall (BW), our main goal here was to provide a thorough evaluation on viscoelastic properties of fresh porcine urinary BW. Three testing modes including Uniaxial tensile, ball-burst (BB) and Dynamic Mechanical Analysis (DMA) were applied in parallel. Uniaxial tests were applied to study how different circumferential and longitudinal cut-outs of lateral region of BW behave under load. DMA was used to measure the viscoelastic properties of the bladder tissue (storage and loss modulus) in a frequency range of 0.1-3 Hz. BB was selected as a different technique, replicating normal physiological conditions where the BW is studied in whole. According to uniaxial tests, the anisotropic behavior of bladder is evident at strain loads higher than 200%. According to DMA, storage modulus is consistently higher than loss modulus in both directions, revealing the elasticity of the BW. The stress-strain curves of both uniaxial and BB tests showed similar trends. However, the ultimate stress measured from BB was found to be around 5 times of the relevant stress from uniaxial loading. The ultimate strain in BB (389.9 +/- 59.8) was interestingly an approximate average of rupture strains in longitudinal (358 +/- 21) and circumferential (435 +/- 69) directions. Considering that each testing mode applied here reveals distinct information, outcomes from the combination of the three can be considered as a helpful data-base to refer to for researchers aiming to regenerate the bladder.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据