4.7 Article

Adaptive synchronization of unknown heterogeneous agents: An adaptive virtual model reference approach

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jfranklin.2018.01.022

关键词

-

资金

  1. European Commission FP7-ICT-2013.3.4, Advanced computing, embedded and control systems [611538]

向作者/读者索取更多资源

This work deals with state synchronization of heterogeneous linear agents with unknown dynamics. The problem is solved by formulating the synchronization problem as a special model reference adaptive control where each agent tries to converge to the model defined by its neighbors. For those agents that do not know the reference signal that drives the flock, a fictitious reference is estimated in place of the actual one: the estimation of such reference is distributed and requires measurements from neighbors. By using a matching condition assumption, which is imposed so that the agents can converge to the same behavior, the fictitious reference estimation leads to adaptive laws for the feedback and the coupling gains arising from distributed matching conditions. In addition, the coupling connection is not scalar as in most literature, but possibly vector-valued. The proposed approach is applicable to heterogeneous agents with arbitrarily large matched uncertainties. A Lyapunov-based approach is derived to show analytically asymptotic convergence of the synchronization error: robustification in the presence of bounded errors or unknown (constant) leader input is also discussed. Finally, a motivational example is presented in the context of Cooperative Adaptive Cruise Control and numerical examples are provided to demonstrate the effectiveness of the proposed method. (C) 2018 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据