3.8 Proceedings Paper

Dopant-free CMOS on SOI: Multi-Gate Si-Nanowire Transistors for Logic and Memory Applications

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/05305.0105ecst

关键词

-

向作者/读者索取更多资源

In CMOS technology, NMOS- and PMOS-FETs are hardware defined by choosing the appropriate doping of source (S) and drain (D) junctions with respect to the substrate. However, in this work we report on a novel CMOS multi-gate (MG) nanowire field-effect transistor (NWFET) architecture on silicon-on-insulator (SOI) material which is virtually free of doping. The fabricated MGN-WFETs are originally ambipolar nanowire devices with midgap Schottky-barriers serving as S/D contacts. A tri-gate structure is used as front-gate for current control across the NWFET whereas a planar back-gate is used to select the desired unipolar device type (i.e. NMOS or PMOS) via field-induced accumulation of electrons or holes, respectively. Both, logic and memory devices can be realized with the same simple nanowire structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据