3.8 Proceedings Paper

Amine blends using concentrated piperazine

期刊

GHGT-11
卷 37, 期 -, 页码 353-369

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.egypro.2013.05.121

关键词

Solvent blends; Piperazine; Absorption rate; Process performance; Degradation; Oxidation; Volatility

资金

  1. Luminant Carbon Management Program

向作者/读者索取更多资源

Blends using concentrated (25 35 wt %) piperazine (PZ) were characterized as solvents for CO2 capture at typical coal flue gas conditions. The new blends are 6 m PZ/2 m hexamethylenediamine (HMDA), 6 m PZ/2 m diaminobutane (DAB), 6 m PZ/2 m bis(aminoethyl) ether (BAE), 5 m PZ/2 m aminoethylpiperazine (AEP), and 5 m PZ/2.3 m 2-amino 2-methyl-propanol (AMP). The CO2 absorption rate of the blends was measured using a wetted wall column (WWC). The CO2 vapor liquid equilibrium was measured at 20 160 degrees C. Amine vapor pressure measurements are reported to show potential volatility at practical conditions. The rate of thermal degradation was measured from 135 to 175 degrees C. Oxidative degradation was measured in two semi-batch experiments with different O-2 rate at absorber conditions. Advanced parameters are introduced to demonstrate the overall rate and energy performance of the solvents in a real process. The performance of 7 m MEA, 8 m PZ, and six other competitive PZ blends are evaluated based on previous results and presented as basis of comparison. All of the PZ blends have better solubility window than 8 m PZ, with no precipitation at rich loading. The absorption rate of the concentrated PZ blends is similar to that of 8 m PZ and 1.5-2 times higher than 7 m MEA; the solvent capacity is about 20% lower than 8 m PZ and 15% higher than 7 m MEA. Among all of the PZ blends, 5 m PZ/5 m MDEA has the best combination of rate and capacity. Blends using HMDA, AEP, BAE, AMP, and MEA have a high heat of CO2 absorption. Blends using MEA, MDEA, and AMP are not thermally stable, while other blends have good thermal stability. The combination of high H-abs and thermal stability leads to good overall energy performance, which is observed for 6 m PZ/2 m HMDA, 6 m PZ/2 m BAE and 5 m PZ/2 m AEP. AMP has relatively high volatility, whereas BAE and AEP are expected to have low volatilities. The only drawback of 6 m PZ/2 m BAE is its high oxidation rate. 6 m PZ/2 m HMDA and 6 m PZ/2 m DAB have good oxidative stability. PZ blends using low viscosity amines will have high absorption rate, and tertiary and hindered amines will contribute to high capacity. Amines with high pKa will improve the blend H-abs. For thermal stability, alkanolamines should not be used together with PZ. Highly viscous blends such as 6 m PZ/2 m HMDA are expected to have 10-20% higher cost associated with cross-exchanger design and operation than solvents with low viscosity. (C) 2013 The Authors. Published by Elsevier Ltd

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据