3.8 Proceedings Paper

Integrating remote sensing and conventional grazing/browsing models for modelling carrying capacity in Southern African rangelands

出版社

SPIE-INT SOC OPTICAL ENGINEERING
DOI: 10.1117/12.2066330

关键词

BECVOL; Rangeland; SPOT5; Southern Africa; Savanna; Carrying Capacity; Random forest

资金

  1. Natural Resources unit of KwaZulu-Natal Department Agriculture and Environmental Affairs

向作者/读者索取更多资源

Woody vegetation encroachment into grasslands or bush thickening, a global phenomenon, is transforming the Southern African grassland systems into savanna-like landscapes. Estimation of woody vegetation is important to rangeland scientists and land managers for assessing its impact on grass production and calculating its grazing and browsing capacity. Assessment of grazing and browsing components is often challenging because agro-ecological landscapes of this region are largely characterized by small scale and heterogeneous land-use-land-cover patterns. In this study, we investigated the utility of high spatial resolution remotely sensing data for modelling grazing and browsing capacity at landscape level. Woody tree density or Tree Equivalents (TE) and Total Leaf Mass (LMASS) data were derived using the Biomass Estimation for Canopy Volume (BECVOL) program. The Random Forest (RF) regression algorithm was assessed to establish relationships between these variables and vegetation indices (Simple Ratio and Normalized Difference Vegetation Index), calculated using the red and near infrared bands of SPOT5. The RF analysis predicted LMASS with R-2 = 0.63 and a Root Mean Square Error (RMSE) of 1256 kg/ha compared to a mean of 2291kg/ha. TE was predicted with R-2 = 0.55 and a RMSE = 1614 TE/ha compared to a mean of 3746 TE/ha. Next, spatial distribution maps of LMASS/ha and TE/ha were derived using separate RF regression models. The resultant maps were then used as input data into conventional grazing and browsing capacity models to calculate grazing and browsing capacity maps for the study area. This study provides a sound platform for integrating currently available and future remote sensing satellite data into rangeland carrying capacity modelling and monitoring.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据