3.8 Proceedings Paper

DaDianNao: A Machine-Learning Supercomputer

出版社

IEEE
DOI: 10.1109/MICRO.2014.58

关键词

-

向作者/读者索取更多资源

Many companies are deploying services, either for consumers or industry, which are largely based on machine-learning algorithms for sophisticated processing of large amounts of data. The state-of-the-art and most popular such machine-learning algorithms are Convolutional and Deep Neural Networks (CNNs and DNNs), which are known to be both computationally and memory intensive. A number of neural network accelerators have been recently proposed which can offer high computational capacity/area ratio, but which remain hampered by memory accesses. However, unlike the memory wall faced by processors on general-purpose workloads, the CNNs and DNNs memory footprint, while large, is not beyond the capability of the on-chip storage of a multi-chip system. This property, combined with the CNN/DNN algorithmic characteristics, can lead to high internal bandwidth and low external communications, which can in turn enable high-degree parallelism at a reasonable area cost. In this article, we introduce a custom multi-chip machine-learning architecture along those lines. We show that, on a subset of the largest known neural network layers, it is possible to achieve a speedup of 450.65x over a GPU, and reduce the energy by 150.31x on average for a 64-chip system. We implement the node down to the place and route at 28nm, containing a combination of custom storage and computational units, with industry-grade interconnects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据