4.5 Article

Spectral analysis of heart rate variability predicts mortality and instability from vascular injury

期刊

JOURNAL OF SURGICAL RESEARCH
卷 224, 期 -, 页码 64-71

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jss.2017.11.029

关键词

Hemorrhagic shock; Hemorrhage; Heart rate variability; Hemorrhage resuscitation; Trauma triage

类别

向作者/读者索取更多资源

Background: Spectral analysis of continuous blood pressure and heart rate variability provides a quantitative assessment of autonomic response to hemorrhage. This may reveal markers of mortality as well as endpoints of resuscitation. Methods: Fourteen male Yorkshire pigs, ranging in weight from 33 to 36 kg, were included in the analysis. All pigs underwent laparotomy and then sustained a standardized retrohepatic inferior vena cava injury. Animals were then allowed to progress to class 3 hemorrhagic shock and where then treated with abdominal sponge packing followed by 6 h of crystalloid resuscitation. If the pigs survived the 6 h resuscitation, they were in the survival (S) group, otherwise they were placed in the nonsurvival (NS) group. Fast Fourier transformation calculations were used to convert the components of blood pressure and heart rate variability into corresponding frequency classifications. Autonomic tones are represented as the following: high frequency (HF) = parasympathetic tone, low frequency (LF) = sympathetic, and very low frequency (VLF) = renin-angiotensin aldosterone system. The relative sympathetic to parasympathetic tone was expressed as LF/HF ratio. Results: Baseline hemodynamic parameters were equal for the S (n = 11) and NS groups. LF/HF was lower at baseline for the NS group but was higher after hemorrhage and the resuscitation period indicative of a predominately parasympathetic response during hemorrhagic shock before mortality. HF signal was lower in the NS group during the resuscitation indicating a relatively lower sympathetic tone during hemorrhagic shock, which may have contributed to mortality. Finally, the NS group had a lower VLF signal at baseline (e.g., [S] 16.3 +/- 2.5 versus [NS] 4.6 +/- 2.9 P < 0.05,) which was predictive of mortality and hemodynamic instability in response to a similar hemorrhagic injury. Conclusions: An increased LF/HF ratio, indicative of parasympathetic predominance following injury and during resuscitation of hemorrhagic shock was a marker of impending death. Spectral analysis of heart rate variability can also identify autonomic lability following hemorrhagic injuries with implications for first responder triage. Furthermore, a decreased VLF signal at baseline indicates an additional marker of hemodynamic instability and marker of mortality following a hemorrhagic injury. These data indicate that continuous quantitative assessment of autonomic response can be a predictor of mortality and potentially guide resuscitation of patients in hemorrhagic shock. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据