4.5 Article

Initial characterization of human DHRS1 (SDR19C1), a member of the short chain dehydrogenase/reductase superfamily

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsbmb.2018.07.013

关键词

DHRS1; SDR19C1; SDR superfamily; Steroid hormones; Xenobiotics

资金

  1. Grant Agency of Charles University [GAUK 348215/C/2015, SW 260 416]

向作者/读者索取更多资源

Many enzymes from the short-chain dehydrogenase/reductase superfamily (SDR) have already been well characterized, particularly those that participate in crucial biochemical reactions in the human body (e.g. 11 beta-hydroxysteroid dehydrogenase 1, 17 beta-hydroxysteroid dehydrogenase 1 or carbonyl reductase 1). Several other SDR enzymes are completely or almost completely uncharacterized, such as DHRS1 (also known as SDR19C1). Based on our in silico and experimental approaches, DHRS1 is described as a likely monotopic protein that interacts with the membrane of the endoplasmic reticulum. The highest expression level of DHRS1 protein was observed in human liver and adrenals. The recombinant form of DHRS1 was purified using the detergent ndodecy1-beta-D-maltoside, and DHRS1 was proven to be an NADPH-dependent reductase that is able to catalyse the in vitro reductive conversion of some steroids (estrone, androstene-3,17-dione and cortisone), as well as other endogenous substances and xenobiotics. The expression pattern and enzyme activities fit to a role in steroid and/or xenobiotic metabolism; however, more research is needed to fully clarify the exact biological function of DHRS1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据