4.4 Article

Studies on the Role of Metabolic Activation in Tyrosine Kinase Inhibitor-Dependent Hepatotoxicity: Induction of CYP3A4 Enhances the Cytotoxicity of Lapatinib in HepaRG Cells

期刊

DRUG METABOLISM AND DISPOSITION
卷 42, 期 1, 页码 162-171

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/dmd.113.054817

关键词

-

资金

  1. National Institutes of Health National Institute of General Medical Sciences [P01 GM32165]
  2. National Institutes of Health National Center for Research Resources [UL1-RR025014]
  3. University of Washington School of Pharmacy Drug Metabolism, Pharmacokinetics, and Transport Research Program
  4. University of Washington School of Pharmacy Elmer M. Plein Research Award
  5. UNCF-Merck Science Initiative

向作者/读者索取更多资源

Idiosyncratic hepatotoxicity has been associated with the oral tyrosine kinase inhibitor lapatinib, which is used in metastatic breast cancer therapy. Lapatinib is extensively metabolized by cytochrome P450 3A4/5 to yield an O-debenzylated metabolite, which can undergo further oxidation to a reactive quinone imine. A recent clinical study reported that concomitant use of lapatinib with dexamethasone increased the incidence of hepatotoxicity in metastatic breast cancer patients treated with lapatinib, and so we hypothesized that induction of CYP3A enhances the bioactivation of lapatinib to reactive intermediates that contribute to hepatotoxicity. Therefore, we examined the effect of CYP3A4 induction on the cytotoxicity and metabolism of lapatinib in the HepaRG human hepatic cell line. Differentiated HepaRG cells were pretreated with dexamethasone (100 mu M) or the prototypical CYP3A4 inducer rifampicin (4 mu M) for 72 hours, followed by incubation with lapatinib (0-100 mu M) for 24 hours. Cell viability was monitored using WST-1 assays, and metabolites were quantified by liquid chromatography coupled to tandem mass spectrometry. Induction of CYP3A4 by dexamethasone or rifampicin enhanced lapatinib-induced cytotoxicity, compared with treatment with lapatinib alone. A direct comparison of the cytotoxicity of lapatinib versus O-debenzylated lapatinib demonstrated that the O-debenzylated metabolite was significantly more cytotoxic than lapatinib itself. Furthermore, pretreatment with 25 mu M L-buthionine sulfoximine to deplete intracellular glutathione markedly enhanced lapatinib cytotoxicity. Cytotoxicity was correlated with increased formation of O-debenzylated lapatinib and cysteine adducts of the putative quinone imine intermediate. Collectively, these data suggest that CYP3A4 induction potentiates lapatinib-induced hepatotoxicity via increased reactive metabolite formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据