4.1 Article

Influence of an Inclined Rock Stratum on In-Situ Stress State in an Open- Pit Mine

期刊

GEOTECHNICAL AND GEOLOGICAL ENGINEERING
卷 32, 期 1, 页码 31-42

出版社

SPRINGER
DOI: 10.1007/s10706-013-9689-4

关键词

Inclined rock strata; In-situ stress; Normalized stress difference; Open-pit mine; 3DEC

资金

  1. key project of National Natural Science Foundation of China [51034001]
  2. Chinese Scholarship Council

向作者/读者索取更多资源

In-situ stress plays a major role with respect to deformation and stability around underground or surficial excavations located at significant depth. Many sedimentary rock masses are more or less horizontally bedded. However, a possibility exists to have one or few inclined rock strata such as dikes in these horizontally bedded formations. It is important to know how the in situ stress changes from a purely horizontally bedded situation to a horizontally bedded rock mass that contains one or few inclined rock strata. This paper presents such an investigation using the largest open- pit metal mine in China- as a case study. This mine has a bedded rock mass with one steeply inclined rock stratum. For the bedded rock mass, the vertical stress was calculated based on the overburden above each lithology. The available in situ stress measurements conducted at the mine were used to estimate the ratios of horizontal to vertical stress. Numerical modeling was performed for the two scenarios: (a) the horizontally bedded system subjected to both the in situ and boundary stresses and (b) the mine lithological system that includes an inclined stiffer (denser) stratum intruding softer horizontally bedded system subjected to only boundary stresses to investigate the influence of an inclined rock stratum on the computed stress field. Thirty points were selected to compute the stresses on six planes of the inclined rock stratum. Due to the discontinuous nature of the geologic system at the interface between the stiffer inclined stratum and softer horizontally bedded system, one principal stress has become normal to the interface plane and the other two have become parallel to the interface plane with all three being perpendicular to each other. Presence of the stiffer inclined rock stratum has given rise to (a) increase in normal stresses up to about 120 % in the inclined rock stratum and (b) new shear stresses approximately in the range - 10.0 to 15.0 MPa. This means, because most of the rock masses are not purely horizontally bedded, estimation of in situ stress through measurements as well as application of in situ stress in numerical modeling associated with underground or surficial excavations located at significant depth is a difficult exercise. A better way to estimate the in situ stresses for complex geologic systems may be through application of appropriate boundary stresses to the geologic system in a numerical model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据