4.6 Article

Compressive behaviour of a nickel superalloy Superni 263 honeycomb sandwich panel

期刊

JOURNAL OF SANDWICH STRUCTURES & MATERIALS
卷 22, 期 5, 页码 1426-1449

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1099636218786438

关键词

Honeycomb sandwich panel; deformation behaviour; nickel superalloy Superni 263; flat compression; cell wall bending

向作者/读者索取更多资源

Metallic thermal protection systems comprising of sandwich panels consisting of hexagonal honeycomb sandwich structures are envisaged to be used in advanced transportation systems like hypersonic vehicles and reusable launch vehicles. The assessment of compressive mechanical behaviour is necessary to understand the response of sandwich structures to aerothermal loads. The fabrication methodology for realizing Ni based superalloy Superni 263 hexagonal honeycomb sandwich panels is established. This work is aimed at understanding the effect of sandwich panel geometry parameters like hexagonal cell size and core thickness on the out-of-plane flatwise compressive behaviour at room temperature. The ultimate compressive strength decreases with increasing core height irrespective of the cell sizes investigated. The dependence of specific compressive strength on the cell size is established by a power law relationship. The compressed sandwich panels subjected to understand the deformation behaviour indicated the dominance of cell wall bending and occasional fracture, however in the case of sandwich panels with higher core thickness cell wall buckling coupled with shearing at the face sheet vicinity is noticed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据