4.8 Review

Tin-based materials as versatile anodes for alkali (earth)-ion batteries

期刊

JOURNAL OF POWER SOURCES
卷 395, 期 -, 页码 41-59

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2018.05.063

关键词

Tin-based materials; Versatile; Lithium-ion batteries; Sodium-ion batteries; Potassium-ion batteries; Magnesium-ion batteries

资金

  1. Research Grants Council of the Hong Kong Special Administrative Region, China [25211817]

向作者/读者索取更多资源

The ever-growing need for next-generation rechargeable batteries with high energy density, long lifetime, high safety and affordable price calls for advanced electrode materials for lithium-ion batteries (LIBs), as well as the development of alternative energy storage systems based on abundant resources such as sodium-ion batteries (SIBs), potassium-ion batteries (KIBs), and magnesium-ion batteries (MIBs). Among various electrode materials, tin-based materials, including oxides, sulfides, alloys, stannates, and phosphides, attract substantial attentions since they can electrochemically react with lithium ions, as well as sodium ions, potassium ions and magnesium ions. The mechanisms for the storage of these alkali (earth) ions in tin-based materials have similarities, such as forming alloys (intermetallics) with tin. Meanwhile, the energy storage mechanism of a certain tin-based material may vary significantly from one battery system to another, resulting in considerable differences in electrochemical properties. In particular, findings associated with energy storage mechanisms are summarized and discussed. The effects of particle morphologies, micro/nanostructures and the integration with carbonaceous matrices on the electrochemical performances are summarized, and various innovative designs of novel threedimensional architectures are highlighted. In addition, the remaining challenges and future perspectives of the development of tin-based materials for alkali (earth)-ion batteries are presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据