4.3 Article

Highly electrically conducting poly(L-lactic acid)/graphite composites prepared via in situ expansion and subsequent reduction of graphite

期刊

JOURNAL OF POLYMER ENGINEERING
卷 38, 期 2, 页码 167-177

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1515/polyeng-2016-0293

关键词

conducting composites; in situ expansion; in situ reduction; percolation threshold

向作者/读者索取更多资源

In this paper, highly electrically conductive polymeric composites were obtained by low-temperature expandable graphite (LTEG) filling poly(L-lactic acid) (PLLA) in the presence of ascorbic acid via an in situ exfoliation and subsequent reduction process during the melt blending. The electrical conductivity of the PLLA/reduced and expanded graphite (R-EG) composites was determined by a four-point probe resistivity determiner and compared with that of the PLLA/expanded graphite (EG) composites. The percolation threshold of PLLA/R-EG blends decreased from 11.2 wt% to 7.1 wt%, which illustrated the superiority of R-EG to the electrically conducting ability of PLLA composites. At the graphite concentration near the percolation threshold, the electrical conductivity of PLLA/R-EG composites was much higher than that of PLLA/EG composites. The effective in situ expansion and reduction of LTEG were crucial to the overall electrical conductivity of the blends, which was confirmed by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analysis. Dynamic rheology analysis confirmed that the connected networks that were the major cause of the rapid increase in electrical conductivity were much more easily formed for PLLA/R-EG blends than those of PLLA/EG blends. Thermogravimetric analysis (TGA) was applied to determine the decomposition and thermal stability of the PLLA/R-EG composites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据