4.6 Article

History-dependence of muscle slack length following contraction and stretch in the human vastus lateralis

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 596, 期 11, 页码 2121-2129

出版社

WILEY
DOI: 10.1113/JP275527

关键词

thixotropy; ultrasound; muscle fascicles

资金

  1. Australian National Health and Medical Research Council (NHMRC) [APP1055084]
  2. NHMRC research fellowships
  3. Royal Freemasons' Benevolent Institution Scholarship for Postgraduate Research Studies

向作者/读者索取更多资源

In reduced muscle preparations, stretch and muscle contraction change the properties of relaxed muscle fibres. In humans, effects of stretch and contraction on properties of relaxed muscles have been inferred from measurements of time taken to develop force, joint stiffness and reflex latencies. The current study used ultrasound imaging to directly observe the effects of stretch and contraction on muscle-tendon slack length and fascicle slack length of the human vastus lateralis muscle in vivo. The muscle was conditioned by (a) strong isometric contractions at long muscle-tendon lengths, (b) strong isometric contractions at short muscle-tendon lengths, (c) weak isometric contractions at long muscle-tendon lengths and (d) slow stretches. One minute after conditioning, ultrasound images were acquired from the relaxed muscle as it was slowly lengthened through its physiological range. The ultrasound image sequences were used to identify muscle-tendon slack angles and fascicle slack lengths. Contraction at short muscle-tendon lengths caused a mean 13.5 degree (95% CI 11.8-15.0 degree) shift in the muscle-tendon slack angle towards shorter muscle-tendon lengths, and a mean 5 mm (95% CI 2-8 mm) reduction in fascicle slack length, compared to the other conditions. A supplementary experiment showed the effect could be demonstrated if the muscle was conditioned by contraction at short lengths but not if the relaxed muscle was held at short lengths, confirming the role of muscle contraction. These observations imply that muscle contraction at short lengths causes the formation of bonds which reduce the effective length of structures that generate passive tension in muscles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据