4.8 Article

Termination of Biological Function at Low Temperatures: Glass or Structural Transition?

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 9, 期 9, 页码 2359-2366

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.8b00537

关键词

-

资金

  1. National Science Foundation [CHE-1800243]

向作者/读者索取更多资源

Energy of life is produced by electron transfer in energy chains of respiration or photosynthesis. A small input of free energy available to biology puts significant restrictions on how much free energy can be lost in each electron-transfer reaction. We advocate the view that breaking ergodicity, leading to violation of the fluctuation dissipation theorem (FDT), is how proteins achieve high reaction rates without sacrificing the reaction free energy. Here we show that a significant level of nonergodicity, represented by a large extent of the configurational temperature over the kinetic temperature, is maintained in the entire physiological range for the cytochrome c electron transfer protein. The protein returns to the state consistent with the FDT below the crossover temperature close to the temperature of the protein glass transition. This crossover leads to a sharp increase in the activation barrier of electron transfer and is displayed by a kink in the Arrhenius plot for the reaction rate constant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据