4.6 Article

Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 122, 期 31, 页码 17575-17585

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.8b02913

关键词

-

资金

  1. Office of Naval Research [N00014-16-1-2580, N00014-10-1-0944]
  2. Toyota Research Institute through the Accelerated Materials Design and Discovery program

向作者/读者索取更多资源

The recent successes of the Materials Genome Initiative have opened up new opportunities for data-centricinformatics approaches in several subfields of materials research, including in polymer science and engineering. Polymers, being inexpensive and possessing a broad range of tunable properties, are widespread in many technological applications. The vast chemical and morphological complexity of polymers though gives rise to challenges in the rational discovery of new materials for specific applications. The nascent field of polymer informatics seeks to provide tools and pathways for accelerated property prediction (and materials design) via surrogate machine learning models built on reliable past data. We have carefully accumulated a data set of organic polymers whose properties were obtained either computationally (bandgap, dielectric constant, refractive index, and atomization energy) or experimentally (glass transition temperature, solubility parameter, and density). A fingerprinting scheme that captures atomistic to morphological structural features was developed to numerically represent the polymers. Machine learning models were then trained by mapping the fingerprints (or features) to properties. Once developed, these models can rapidly predict properties of new polymers (within the same chemical class as the parent data set) and can also provide uncertainties underlying the predictions. Since different properties depend on different length-scale features, the prediction models were built on an optimized set of features for each individual property. Furthermore, these models are incorporated in a user-friendly online platform named Polymer Genome (www.polymergenome.org). Systematic and progressive expansion of both chemical and property spaces are planned to extend the applicability of Polymer Genome to a wide range of technological domains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据