4.6 Article

Surface Chemistry Control of Colloidal Quantum Dot Band Gap

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 122, 期 31, 页码 18110-18116

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.8b05124

关键词

-

向作者/读者索取更多资源

Surface chemistry modification of as-synthesized colloidal inorganic semiconductor nanocrystals (QDs), commonly referred to as ligand exchange, is mandatory toward effective QD-based optoelectronic and photocatalytic applications. The widespread recourse to ligand exchange procedures on metal chalcogenide QDs often narrows the optical band gap, although little consensus exists on explanation of this experimental evidence. This work attempts at providing a comprehensive description of such a phenomenon by exploiting rationally designed thiol ligands at the surface of colloidal PbS QDs, as archetype of material in the strong quantum confinement regime: the thiol(ate)-induced QD optical band gap reduction almost linearly scales with the inorganic core surface-to-volume ratio and mainly depends on the sulfur binding atom, which is here suggested to contribute occupied 3p orbitals to the valence band edge of the QDs. As opposed to QD models based on the analogy with core/shell heterostructures, the indecomposable character of ligand/core adducts (the colloidal QDs themselves) arises.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据