4.6 Article

Surface Charge Effects on Fe(II) Sorption and Oxidation at (110) Goethite Surfaces

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 122, 期 18, 页码 10059-10066

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.8b02099

关键词

-

资金

  1. U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division through its Geosciences program at the Pacific Northwest National Laboratory (PNNL)
  2. DOE's Office of Biological and Environmental Research
  3. U.S. Department of Energy (DOE) Chemical Sciences, Geosciences, and Biosciences Division [DE-AC02-05CH11231]

向作者/读者索取更多资源

Iron(III) oxides and oxyhydroxides are among the most reactive minerals in the environment, with surfaces that become charged when immersed in water. The governing role of surface charge over interfacial processes such as metal sorption is well understood. However, its role in interfacial redox reactions, such as when metal sorption is coupled to interfacial electron transfer (ET), is not. This is mainly because surface charge affects not only the types and densities of surface complexes formed but also their respective driving forces for ET. An important case is Fe(II)-catalyzed recrystallization of Fe(III)-oxyhydroxides, in which Fe(II) sorption and interfacial ET are closely linked. In this study, we used replica-exchange constant-pH molecular dynamics simulations (Zarzycki, P.; Smith, D. M.; Rosso, K. M. J. Chem. Theory Comput. 2015, 11, 1715-1724) to calculate the distance-dependent electrostatic potential at charged (110) surfaces of goethite particles, assessing its effect on previously computed Fe(II) sorption and interfacial ET free energies (Zarzycki, P.; Kerisit, S.; Rosso, K. M. J. Phys. Chem. C 2015, 119, 3111-3123). We show that Fe(II) adsorbs preferentially as an inner-sphere complex on the negatively charged surface, and as an outer-sphere complex on the positively charged surface because of both electrostatic repulsion and high energy barriers that arise from ordered water layers at the interface. The separation distance between adsorbed Fe(II) and the surface largely dictates adiabatic versus nonadiabatic ET regimes for this interface. The findings help unravel the pH dependence of Fe(II)-catalyzed recrystallization of goethite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据