4.6 Article

Excitation Intensity Dependence of Photoluminescence Blinking in CsPbBr3 Perovskite Nanocrystals

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 122, 期 22, 页码 12106-12113

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.8b03206

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05-CF111231, KC3103]

向作者/读者索取更多资源

Perovskite semiconductors have emerged as a promising class of materials for optoelectronic applications. Their favorable device performances can be partly justified by the defect tolerance that originates from their electronic structure. The effect of this inherent defect tolerance, namely the absence of deep trap states, on the photoluminescence (PL) of perovskite nanocrystals (NCs) is currently not well understood. The PL emission of NCs fluctuates in time according to power law kinetics (PL intermittency, or blinking), a phenomenon that has been explored over the past two decades in a vast array of nanocrystal (NC) materials. The kinetics of the blinking process in perovskite NCs have not been widely explored. Here, PL trajectories of individual orthorhombic cesium lead bromide (CsPbBr3) perovskite NCs are measured using a range of excitation intensities. The power law kinetics of the bright NC state are observed to truncate exponentially at long durations, with a truncation time that decreases with increasing intensity before saturating at an intensity corresponding to an average formation of a single exciton. The results indicate that a diffusion-controlled electron transfer (DCET) mechanism is the most likely charge trapping process, while Auger autoionization plays a lesser role. The relevance of the multiple recombination centers (MRC) model to the results presented here cannot be ascertained, since the underlying switching mechanism is not currently available. Further experimentation and theoretical work are needed to gain a comprehensive understanding of the photophysics in these emerging materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据