4.5 Article

Specific Cation Effects on SCN(-)in Bulk Solution and at the Air-Water Interface

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 122, 期 19, 页码 5094-5105

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.8b02303

关键词

-

资金

  1. Swedish Research Council [2012-03021, 2017-04372]
  2. Swedish Strategic Research Foundation [FFL12-0064]

向作者/读者索取更多资源

The large and sparsely hydrated thiocyanate anion, SCN-, plays a prominent role in the study of specific ion effects in biological, colloid, and atmospheric chemistry due to its extreme position in the Hofmeister series. Using atomistic modeling of aqueous SCN- solutions, we provide novel insight at the molecular scale into the experimentally observed differences in ion pairing, clustering, reorientation dynamics, mutual diffusion, and solubility between the sodium, Na+, and the potassium, K+, salt. Compared to KSCN, NaSCN has a less pronounced tendency to ion pairing; nevertheless, at high salt concentrations, we observe a strong attraction between Na+ cations and the nitrogen end of SCN-, resulting in larger and more closely packed ion clusters. To accurately model aqueous SCN- solutions in computer simulations, we develop a thermodynamically consistent force field rooted in quantum-chemical calculations and refined using the Kirkwood-Buff theory. The force field is compatible with the extended simple point charge and three-point optimal point charge classical water models and reproduces experimental activity derivatives and air-water surface tension for a wide range of salt concentrations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据