4.5 Article

Transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 contribute to the progression of colonic inflammation in dextran sulfate sodium-induced colitis in mice: Links to calcitonin gene-related peptide and substance P

期刊

JOURNAL OF PHARMACOLOGICAL SCIENCES
卷 136, 期 3, 页码 121-132

出版社

JAPANESE PHARMACOLOGICAL SOC
DOI: 10.1016/j.jphs.2017.12.012

关键词

Colonic inflammation; Transient receptor potential channels; Calcitonin gene-related peptide; Substance P; Capsaicin

资金

  1. Ministry of Education, Science, Sports, and Culture of Japan [25860395, 16K08287, 15H06727]
  2. Takeda Science Foundation
  3. Grants-in-Aid for Scientific Research [25860395, 16K08287, 15H06727] Funding Source: KAKEN

向作者/读者索取更多资源

Transient receptor potential (TRP) vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1), which are non-selective cation channels, play important roles in the sensation of pain. This study investigated the roles of TRPV1 and TRPA1 in dextran sulfate sodium (DSS)-induced murine colitis. DSS (2%) administered for 7 days caused severe colitis that was significantly less severe in TRPV1-deficient (TRPV1KO) and TRPA1-deficient (TRPA1KO) mice than that in wild-type (WT) mice. Similar colitis attenuations were observed in TRPV1KO and TRPA1KO mice but not in WT mice that had been transplanted with bone marrow cells from WT, TRPA1KO, or TRPV1KO mice. DSS treatment upregulated calcitonin gene-relative peptide (CGRP)- and substance P(SP)-positive nerve fibers in the colonic mucosa of WT mice. TRPV1KO and TRPA1KO mice showed significant reductions in the DSS-induced upregulation of SP, but the DSS-induced upregulation of CGRP was not reduced. Sensory deafferentation evoked by pretreatment with high doses of capsaicin markedly exacerbated DSS-induced colitis with reductions in DSS-induced upregulation of SP- and CGRP-positive nerve fibers. These findings suggest that neuronal TRPV1 and TRPA1 contribute to the progression of colonic inflammation. While these responses may be mediated by the upregulation of SP-mediated deleterious mechanisms, CGRP may be associated with protective mechanisms. (C) 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据