4.6 Article

In vitro interaction of cefotaxime with calf thymus DNA: Insights from spectroscopic, calorimetric and molecular modelling studies

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpba.2017.10.016

关键词

Molecular docking; Cefotaxime; Minor groove binding; ITC; Drug-DNA interaction

向作者/读者索取更多资源

Cefotaxime is third generation antibiotic with known therapeutic efficacy against bacterial infections including cerebral abscesses and bacterial meningitis. The beta-lactam group of drugs are considered safest antibiotics. Many antibiotics directly interact with DNA and alter their expression profile. Thus, it is necessary to understand the binding mode and its relevance to drug activity and toxicity. There is considerably a remarkable focus on deciphering the binding mechanism of these therapeutic agents as DNA is one of the major target for wide range of drugs. Cefotaxime has been extensively studied for its pharmacological properties while its binding mode to DNA has not been explicated so far. In this study, we have unveiled the binding mechanism of cefotaxime to DNA by using various biophysical, thermodynamic and in silico techniques. UV-vis spectroscopy confirmed the formation cefotaxime-DNA complex along with a brief idea about the extent of interaction. Fluorescence spectroscopy yielded the values of various binding constants and explained mode of fluorescence quenching to be static. CD spectroscopy, thermal denaturation, KI quenching and viscosity measurement explained that cefotaxime is groove binder. Measuring the effect of ions on cefotaxime-DNA complex ensured that it does not bind to DNA electrostatically. Dye displacement experiments finally confirmed that cefotaxime binds to the minor groove of DNA. ITC gave the thermodynamic profile of this binding in which negative value of Gibb's free energy change revealed that the process is spontaneous. Molecular modelling finally strengthened our experimental results that cefotaxime was located in curved contour of minor groove of DNA. The findings support on safety of drug and may have a little interference on normal biological functions. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据