4.5 Article

A non-inertial two-phase model of wax transport in a pipeline during pigging operations

期刊

JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING
卷 165, 期 -, 页码 664-672

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.petrol.2018.02.071

关键词

Bypass pigging; Waxy oil; Pipe flow; Non-inertial frame of reference

向作者/读者索取更多资源

The removal of wax deposit from pipelines is commonly accomplished using pigs. In order to avoid the formation of wax plugs in pipes, bypass pigs, which create a liquid jet to disperse the scraped deposit, are employed. Despite many One-Dimensional (1D) models have been developed to predict the dynamics of bypass pigs, the details of the interaction between the liquid jet and the debris have not been investigated numerically yet. In this work the fluid dynamics of a wax-in-oil slurry in front of a moving bypass pig is studied by means of three-dimensional (3D) numerical simulations. A mathematical model which couples the pig and the wax-in-oil slurry dynamics, solved in the pig frame of reference, has been developed. The results show that the pig quickly reaches an equilibrium velocity, and the pig acceleration is proportional to the square of the mixture relative velocity. Comparing the present with previous sealing-pig results it appears that the bypass flow is more effective in deterring plug formation. Moreover, the 3D fields have the advantage of showing the wax distribution in each pipe section whereas the 1D model cannot distinguish between deposited and suspended wax.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据