4.4 Article

Experimental Investigation and Design Optimization of Targeted Energy Transfer Under Periodic Forcing

出版社

ASME
DOI: 10.1115/1.4026432

关键词

-

向作者/读者索取更多资源

In this paper, the dynamic response of a harmonically forced linear oscillator (LO) strongly coupled to a nonlinear energy sink (NES) is investigated both theoretically and experimentally. The system studied comprises an LO with an embedded, purely cubic NES. The behavior of the system is analyzed in the vicinity of 1 : 1 resonance. The complexification-averaging technique is used to obtain modulation equations and the associated fixed points. These modulation equations are analyzed using asymptotic expansion to study the regimes related to relaxation oscillation of the slow flow, called strongly modulated response (SMR). The zones where SMR occurs are computed using a mapping procedure. The slow invariant manifolds (SIM) are used to derive a proper optimization procedure. It is shown that there is an optimal zone in the forcing amplitude-nonlinear stiffness parameter plane, where SMR occurs without having a high amplitude detached resonance tongue. Two experimental setups are presented. One is not optimized and has a relatively high mass ratio (approximate to 13%) and the other one is optimized and exhibits strong mass asymmetry (mass ratio approximate to 1%). Different frequency response curves and associated zones of SMR are obtained for various forcing amplitudes. The reported experimental results confirm the design procedure and the possible application of NES for vibration mitigation under periodic forcing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据