4.5 Article

A parameter model of gas exchange for the seasonal sea ice zone

期刊

OCEAN SCIENCE
卷 10, 期 1, 页码 17-28

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/os-10-17-2014

关键词

-

资金

  1. National Science Foundation [0944643]
  2. Office of Polar Programs (OPP)
  3. Directorate For Geosciences [0944643] Funding Source: National Science Foundation

向作者/读者索取更多资源

Carbon budgets for the polar oceans require better constraint on air-sea gas exchange in the sea ice zone (SIZ). Here, we utilize advances in the theory of turbulence, mixing and air-sea flux in the ice-ocean boundary layer (IOBL) to formulate a simple model for gas exchange when the surface ocean is partially covered by sea ice. The gas transfer velocity (k) is related to shear-driven and convection-driven turbulence in the aqueous mass boundary layer, and to the mean-squared wave slope at the air-sea interface. We use the model to estimate k along the drift track of ice-tethered profilers (ITPs) in the Arctic. Individual estimates of daily-averaged k from ITP drifts ranged between 1.1 and 22 m d(-1), and the fraction of open water (f) ranged from 0 to 0.83. Converted to area-weighted effective transfer velocities (k(eff)), the minimum value of k(eff) was 10(-5)5 m d(-1) near f = 0 with values exceeding k(eff) = 5 m d(-1) at f = 0.4. The model indicates that effects from shear and convection in the sea ice zone contribute an additional 40% to the magnitude of k(eff), beyond what would be predicted from an estimate of k(eff) based solely upon a wind speed parameterization. Although the ultimate scaling relationship for gas exchange in the sea ice zone will require validation in laboratory and field studies, the basic parameter model described here demonstrates that it is feasible to formulate estimates of k based upon properties of the IOBL using data sources that presently exist.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据