4.2 Article

Sodium Iodate Disrupted the Mitochondrial-Lysosomal Axis in Cultured Retinal Pigment Epithelial Cells

期刊

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/jop.2017.0073

关键词

sodium iodate; retinal pigment epithelium; retinal degeneration; mitochondria; autophagy

向作者/读者索取更多资源

Purpose: Low doses of sodium iodate (NaIO3) impair visual function in experimental animals with selective damage to retinal pigment epithelium (RPE) and serve as a useful model to study diseases caused by RPE degeneration. Mitochondrial dysfunction and defective autophagy have been suggested to play important roles in normal aging as well as many neurodegenerative diseases. In this study, we examined whether NaIO3 treatment disrupted the mitochondrial-lysosomal axis in cultured RPE. Methods: The human RPE cell line, ARPE-19, was treated with low concentrations (500M) of NaIO3. The expression of proteins involved in the autophagic pathway and mitochondrial biogenesis was examined with Western blot. Intracellular acidic compartments and lipofuscinogenesis were evaluated by acridine orange staining and autofluorescence, respectively. Mitochondrial mass, mitochondrial membrane potential (MMP), and mitochondrial function were quantified by MitoTracker Green staining, tetramethylrhodamine methyl ester staining, and the MTT assay, respectively. Phagocytosis and the degradation of photoreceptor outer segments (POS) were assessed by fluorescence-based approaches and Western blot against rhodopsin. Results: Treatment with low concentrations of NaIO3 decreased cellular acidity, blocked autophagic flux, and resulted in increased lipofuscinogenesis in ARPE-19 cells. Despite increases in protein levels of Sirtuin 1 and PGC-1, mitochondrial function was compromised, and this decrease was attributed to disrupted MMP. POS phagocytic activities decreased by 60% in NaIO3-treated cells, and the degradation of ingested POS was also impaired. Pretreatment and cotreatment with rapamycin partially rescued NaIO3-induced RPE dysfunction. Conclusions: Low concentrations of NaIO3 disrupted the mitochondrial-lysosomal axis in RPE and led to impaired phagocytic activities and degradation capacities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据