4.7 Article

Protective effects of selenium-glutathione-enriched probiotics on CCl4-induced liver fibrosis

期刊

JOURNAL OF NUTRITIONAL BIOCHEMISTRY
卷 58, 期 -, 页码 138-149

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jnutbio.2018.04.011

关键词

Silent Information Regulator 1; Oxidative Stress; ER Stress; Inflammation; MAPK

资金

  1. National Key R D Program [2016YFD0501203]
  2. National Natural Science Foundation of China [31472253, 31772811]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions (Jiangsu, China)

向作者/读者索取更多资源

Hepatic fibrosis is a common pathological basis of liver cirrhosis and hepatocellular carcinomas. So, prevention and treatment of liver fibrosis is one of the crucial therapeutic goals in hepatology. Organic selenium, glutathione or probiotics supplementation could ameliorate hepatic fibrosis, respectively. The purpose of this study is to develop a novel selenium-glutathione-enriched probiotics (SGP) and to investigate its protective effect on CCl4-induced liver fibrosis in rats. Yeast strains with the high-yield glutathione were isolated and identified by analysis of 26S ribosomal DNA sequences. The fermentation parameters of SGP were optimized through single-factor, Plackett-Burman (PB) design and response surface methodology (RSM). The final SGP contained 38.4 mu g/g of organic selenium, 34.1 mg/g of intracellular glutathione, approximately 1x10(10) CFU/g live Saccharomyces cerevisiae and 1x10(12) CFU/g live Lactobacillus acidophilus. SGP had better protective effects on liver fibrosis than selenium, glutathione or probiotics, respectively. The hepatic silent information regulator 1 (SIRT1) level was down regulated and oxidative stress, endoplasmic reticulum (ER) stress, inflammation and phosphorylated MAPK was increased in CCl4-treated rats. However, SGP can significantly reverse these changes caused by CCl4. Our findings suggest that SGP was effective in attenuating liver fibrosis by the activation of SIRT1 signaling and attenuating hepatic oxidative stress, ER stress, inflammation and MAPK signaling. (C) 2018 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据