4.7 Article

Inulin fiber dose-dependently modulates energy balance, glucose tolerance, gut microbiota, hormones and diet preference in high-fat-fed male rats

期刊

JOURNAL OF NUTRITIONAL BIOCHEMISTRY
卷 59, 期 -, 页码 142-152

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jnutbio.2018.05.017

关键词

Prebiotic; Satiety hormones; Energy expenditure; Microbiota; Obesity; Diabetes

资金

  1. Heart and Stroke Foundation of Canada [G-18-0022205]
  2. Alberta Livestock and Meat Agency [2015P001R]
  3. Canada Foundation for Innovation [18617]
  4. Alberta Advanced Education and Technology [URSI-09-008-SEG]

向作者/读者索取更多资源

Inulin, a popular prebiotic fiber, has been reported to promote satiety and fat loss; however, the dose-response effects of inulin on energy balance and diet preference, and whether the metabolic effects are independent of calorie restriction are not well characterized. Therefore, we compared the effects of diets varying in inulin concentrations on food intake, energy expenditure, body composition, gut microbiota and hormones, and assessed whether inulin-induced hypophagia was due to reduced diet preference. In experiment 1, male rats were randomized to six high-fat diet groups: control (CON, 0% inulin), 2.5% inulin (2.51N), 10% inulin (10IN), 25% inulin (25IN), 25% cellulose (25CE) or pair-fed to 25IN (25PF) for 21 days. We demonstrate that inulin dose-dependently decreased caloric intake and respiratory quotient; improved glucose tolerance; increased the abundance of Bacteroidetes and Bifidobacterium spp.; decreased Clostridium clusters I and IV; increased butyryl-CoA:acetate CoA-transferase in cecum; upregulated peptide YY, cholecystokinin and proglucagon transcripts in the cecum and colon; and increased plasma peptide YY and glucagon-like peptide-1 concentrations. Importantly, unlike 25PF, 25IN attenuated the reduction in energy expenditure associated with calorie restriction and decreased adiposity. In experiment 2, following four training periods, diet preferences were determined. Although 10IN and 251N decreased caloric intake, and 25CE increased caloric intake, during training, all high-fiber diets were less preferred. Taken together, this work demonstrates that inulin dose-dependently decreased caloric intake, modulated gut microbiota and upregulated satiety hormones, with metabolic effects being largely independent of caloric restriction. (C) 2018 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据