4.7 Article

Butyrate from pectin fermentation inhibits intestinal cholesterol absorption and attenuates atherosclerosis in apolipoprotein E-deficient mice

期刊

JOURNAL OF NUTRITIONAL BIOCHEMISTRY
卷 56, 期 -, 页码 175-182

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jnutbio.2018.02.011

关键词

Atherosclerosis; Dietary fiber; Pectin; Short-chain fatty acid; Cholesterol absorption

资金

  1. National Natural Science Foundation of China [81573152]

向作者/读者索取更多资源

Short-chain fatty acids (SCFAs), the major products of dietary fiber fermentation by intestinal microflora, exert beneficial effects on pathogenesis of multiple metabolic diseases. The aim of this study was to determine whether SCFAs from fermentation of pectin (PE), a soluble dietary fiber, prevent the development of atherosclerosis in apolipoprotein E-deficient (apoE(-/-)) mice. Male apoE(-/-) mice (8-week-old) were fed a high-fat, high-cholesterol diet (HCD; 21% wt/wt fat, 0.15% wt/wt cholesterol) or HCD supplemented with 20% wt/wt PE (HCD+PE) alone or with antibiotics (HCD+PE + A) in drinking water for 12 weeks. Serum lipids and SCFAs concentrations, atherosclerotic lesion area, and intestinal morphology and function were measured. Caco-2 cells were treated with SCFAs to determine whether they affected the expression of genes involved in cholesterol absorption. HCD +PE-treated mice exhibited decreased serum total and low-density lipoprotein cholesterol, and reduced atherosclerotic lesion area compared with HCD mice. These beneficial effects of PE were not observed in the HCD+PE+A group. Incubation of Caco-2 cells with butyrate, but not acetate and propionate, down-regulated the expression of Niemann-Pick Cl-Like 1 but up-regulated the ATP-binding cassette transporters G5 and G8 (ABCG5 and G8) at the mRNA level. Butyrate treatment also increased transcriptional activity of liver X receptor in Caco-2 cells. Our data suggest that butyrate from PE intestinal fermentation protects mice from the progression of diet-induced atherosclerosis in apoE(-/-) mice. These findings suggest a novel mechanism by which dietary fiber may prevent the development of atherosclerosis. (C) 2018 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据