4.7 Article

Glass-bonded iodosodalite waste form for immobilization of I-129

期刊

JOURNAL OF NUCLEAR MATERIALS
卷 504, 期 -, 页码 109-121

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jnucmat.2018.03.033

关键词

Iodosodalite; Sodalite; Glass ceramic waste form; Glass composite material

资金

  1. U.S. Department of Energy [DE-NE0008257]
  2. DOE [DE-AC05-76RL01830]
  3. Engineering and Physical Sciences Research Council [EP/N017374/1]
  4. EPSRC [EP/N017374/1] Funding Source: UKRI

向作者/读者索取更多资源

Immobilization of radioiodine is an important requirement for current and future nuclear fuel cycles. Iodosodalite [Na-8(AlSiO4)(6)I-2] was synthesized hydrothermally from metakaolin, NaI, and NaOH. Dried unwashed sodalite powders were used to synthesize glass-bonded iodosodalite waste forms (glass composite materials) by heating pressed pellets at 650, 750, or 850 degrees C with two types of sodium borosilicate glass binders. These heat-treated specimens were characterized with X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, thermal analysis, porosity and density measurements, neutron activation analysis, and inductively-coupled plasma mass spectrometry. For the best waste form produced (pellets mixed with 10 mass% of glass binder and heat-treated at 750 degrees C), the maximum possible elemental iodine loading was 19.8 mass%, but only similar to 8-9 mass% waste loading of iodine was retained in the waste form after thermal processing. Other pellets with higher iodine retention either contained higher porosity or were incompletely sintered. ASTM C1308 and C1285 (product consistency test, PCT) experiments were performed to understand chemical durability under diffusive and static conditions. The C1308 test resulted in significantly higher normalized loss compared to the C1285 test, most likely because of the strong effect of neutral pH solution renewal and prevention of ion saturation in solution. Both experiments indicated that release rates of Na and Si were higher than for Al and I, probably due to a poorly durable Na-Si-O phase from the glass bonding matrix or from initial sodalite synthesis; however the C1308 test result indicated that congruent dissolution of iodosodalite occurred. The average release rates of iodine obtained from C1308 were 0.17 and 1.29 gm(-2) d(-1) for 80 or 8 m(-1), respectively, and the C1285 analysis gave a value of 2 x 10(-5) g m(-2) d(-1), which is comparable to or better than the durability of other iodine waste forms. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据