4.5 Article

Broadband Calibration of Acoustic Emission and Ultrasonic Sensors from Generalized Ray Theory and Finite Element Models

期刊

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10921-018-0462-8

关键词

Broadband sensor calibration; Generalized ray theory; Finite element; Aperture effect; Couplant; Absolute sensitivity

向作者/读者索取更多资源

This paper describes a calibration method for acoustic emission and ultrasonic sensors that is effective from 1 kHz to 1 MHz. The method combines generalized ray theory and finite element analysis to model wave propagation at higher and lower frequencies, respectively. A ball impact is used as a calibration source, a thick aluminum plate is used as the test block, and hot glue is used as the couplant. We demonstrate this method on five commercial piezoelectric sensors: Physical Acoustics (PAC) R15a, PACWSa, Panametrics V101, Panametrics V103, and Valpey-Fisher Pinducer. Our calibration results show that reflections and other wave phases can be more clearly identified with the less-resonant Panametrics sensors. The PAC sensors have the greatest sensitivity and are able to detect surface normal displacements at least down to 1 pm amplitude in the 100s of kHz frequency band. Aperture effect is minimized by the small size of the Pinducer. Our method focuses on the amplitude response of the sensors (phase is ignored) and extends the calibration to a frequency band that is lower than typical analyses. Low frequency information is useful for determining the seismic moment of a seismic source (analogous to the magnitude of an earthquake) and can increase the amount of information acquired in a single recording.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据