4.8 Article

Li Ion Dynamics along the Inner Surfaces of Layer-Structured 2H-LixNbS2

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 7, 期 7, 页码 4089-4099

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am5078655

关键词

NMR; relaxation; dimensionality; insertion materials; jump diffusion

资金

  1. Deutsche Forschungsgemeinschaft (DFG) within the DFG Research Unit 1277 [WI 3600 2-2]
  2. Austrian Federal Ministry of Science, Research and Economy
  3. Austrian National Foundation for Research, Technology and Development

向作者/读者索取更多资源

Layer-structured materials, such as graphite (LiCy) or Lix(Co,Ni,Mn)O-2, are important electrode materials in current battery research that still relies on insertion materials. This is due to their excellent ability to reversibly accommodate small alkali ions such as Li+ and Na+. Despite of these applications, microscopic information on Li ion self-diffusion in transition metal sulfides are relatively rare. Here, we used Li-7 nuclear magnetic resonance (NMR) spectroscopy to study translational Li ion diffusion in hexagonal (2H) LixNbS2 (x = 0.3, 0.7, and 1) by means of variable-temperature NMR relaxometry. Li-7 spin-lattice relaxation rates and Li-7 NMR spectra were used to determine Li jump rates and activation barriers as a function of Li content. Hereby, NMR spin-lattice relaxation rates recorded with the spin-lock technique offered the possibility to study Li ion dynamics on both the short-range and long-range length scale. Information was extracted from complete diffusion-induced rate peaks that are obtained when the relaxation rate is plotted vs inverse temperature. The peak maximum of the three samples studied shifts toward higher temperatures with increasing Li content x in 2H-LixNbS2. Information on the dimensionality of the diffusion process was experimentally obtained by frequency dependent R-p measurements carried out at T = 444 K, that is in the high-temperature regime of the rate peaks. A slight, but measurable frequency-dependence within this limit is found for all samples; it is in good agreement with predictions from relaxation models developed to approximate low-dimensional (2D) jump diffusion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据