4.5 Article

Increased acetylcholine and glutamate efflux in the prefrontal cortex following intranasal orexin-A (hypocretin-1)

期刊

JOURNAL OF NEUROCHEMISTRY
卷 145, 期 3, 页码 232-244

出版社

WILEY
DOI: 10.1111/jnc.14279

关键词

acetylcholine; cognition; hypocretin; intranasal; microdialysis; orexin

资金

  1. National Institutes of Health [R01AG050518]
  2. University of South Carolina SPARC Graduate Research Program
  3. University of South Carolina Magellan Scholars Program

向作者/读者索取更多资源

Orexin/hypocretin neurons of the lateral hypothalamus and perifornical area are integrators of physiological function. Previous work from our laboratory and others has shown the importance of orexin transmission in cognition. Age-related reductions in markers of orexin function further suggest that this neuropeptide may be a useful target for the treatment of age-related cognitive dysfunction. Intranasal administration of orexin-A (OxA) has shown promise as a therapeutic option for cognitive dysfunction. However, the neurochemical mechanisms of intranasal OxA administration are not fully understood. Here, we use immunohistochemistry and in vivo microdialysis to define the effects of acute intranasal OxA administration on: (i) activation of neuronal populations in the cortex, basal forebrain, and brainstem and (ii) acetylcholine (ACh) and glutamate efflux in the prefrontal cortex (PFC) of Fischer 344/Brown Norway F1 rats. Acute intranasal administration of OxA significantly increased c-Fos expression, a marker for neuronal activation, in the PFC and in subpopulations of basal forebrain cholinergic neurons. Subsequently, we investigated the effects of acute intranasal OxA on neurotransmitter efflux in the PFC and found that intranasal OxA significantly increased both ACh and glutamate efflux in this region. These findings were independent from any changes in c-Fos expression in orexin neurons, suggesting that these effects are not resultant from direct activation of orexin neurons. In total, these data indicate that intranasal OxA may enhance cognition through activation of distinct neuronal populations in the cortex and basal forebrain and through increased neurotransmission of ACh and glutamate in the PFC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据