4.6 Article

Adaptive quantization of local field potentials for wireless implants in freely moving animals: an open-source neural recording device

期刊

JOURNAL OF NEURAL ENGINEERING
卷 15, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1741-2552/aaa041

关键词

neurotechnology; neurophysiology; wireless transmission; neural telemetry; neural implants; local field potential

资金

  1. LABEX CORTEX, within the program 'Investissements d'Avenir' [ANR-11-LABX-0042, ANR-11-IDEX-0007]
  2. FEDER
  3. Region Lorraine
  4. French research program CPER Cyberentreprises

向作者/读者索取更多资源

Objective. Modern neuroscience research requires electrophysiological recording of local field potentials (LFPs) in moving animals. Wireless transmission has the advantage of removing the wires between the animal and the recording equipment but is hampered by the large number of data to be sent at a relatively high rate. Approach. To reduce transmission bandwidth, we propose an encoder/decoder scheme based on adaptive non-uniform quantization. Our algorithm uses the current transmitted codeword to adapt the quantization intervals to changing statistics in LFP signals. It is thus backward adaptive and does not require the sending of side information. The computational complexity is low and similar at the encoder and decoder sides. These features allow for real-time signal recovery and facilitate hardware implementation with low-cost commercial microcontrollers. Main results. As proof-o& concept, we developed an open-source neural recording device called NeRD. The NeRD prototype digitally transmits eight channels encoded at 10 kHz with 2 bits per sample. It occupies a volume of 2 x 2 x 2 cm(3) and weighs 8 g with a small battery allowing for 2 h 40 min of autonomy. The power dissipation is 59.4 mW for a communication range of 8 m and transmission losses below 0.1%. The small weight and low power consumption offer the possibility of mounting the entire device on the head of a rodent without resorting to a separate head-stage and battery backpack. The NeRD prototype is validated in recording LFPs in freely moving rats at 2 bits per sample while maintaining an acceptable signal-to-noise ratio (>30 dB) over a range of noisy channels. Significance. Adaptive quantization in neural implants allows for lower transmission bandwidths while retaining high signal fidelity and preserving fundamental frequencies in LFPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据