4.6 Article

Recent human impacts and change in dynamics and morphology of ephemeral rivers

期刊

NATURAL HAZARDS AND EARTH SYSTEM SCIENCES
卷 14, 期 3, 页码 713-730

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/nhess-14-713-2014

关键词

-

资金

  1. [CGL2011-23857]

向作者/读者索取更多资源

Ephemeral streams induce flash-flood events, which cause dramatic morphological changes and impacts on population, mainly because they are intermittent and less predictable. Human pressures on the basin modify load and discharge relationships, inducing dormant instability on the fluvial system that will manifest abruptly during flood events. The flash-flood response of two ephemeral streams affected by load supply modification due to land use changes is discussed in a combination of geomorphic and hydraulic approaches. During the Rivillas flash flood, intensive clearing on the basin led to high rates of sediment flowing into an artificially straightened and inefficient channel. The stream evolved from a sinuous single channel into a shallow braiding occupying the entire width of the valley floor. Misfits and unsteady channel conditions increased velocity, stream power and sediment entrainment capacity and considerably magnified flood damage. Resulting morphosedimentary features revealed a close relationship with the valley floor post-flood hydraulic model, and pre-event awareness would have made it possible to predict risk-sensitive areas. In the second case, the Azoh a stream, modelling of current pre-flood channel conditions make it possible to determine channel narrowing and entrenchment in the lower alluvial fan stretch. Abandonment of intensive agriculture, basin reforestation and urbanization diminish load contribution and trigger channel incision. This induces an increase in slope and velocity in the bankfull channel, producing renewed erosive energy and thus activating upstream propagation of incision and bank undermining. The absence of water-spreading dynamics on the alluvial fan in favour of confinement in a single channel produces an unstable dynamic in the system, also offering a false sense of stability, as long as no large magnitude floods occur. When modelling flood-prone areas and analysing hydraulic variables, it is important to detect possible anthropic disturbances that may affect basin load budgets in order to anticipate catastrophic consequences resulting from inappropriate fluvial management before the occurrence of an extraordinary event.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据